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The first webinar on Al in Cancer Care was chaired by Eduardo Farina, Radiology Resident at
UNIFESP (Federal University of Sdo Paulo, Brazil) and Al Developer for healthcare at DASA (da
América SA), SP, Brazil, who welcomed everyone and introduced the speakers.

What is Al in Cancer: Basics and Settings of Application

Felipe Kitamura, Head of Applied Innovation and Al at DASA, and Neuroradiologist at UNIFESP,
started his presentation by looking at the three main types of machine learning (ML) algorithms:
supervised learning, unsupervised learning, and reinforcement learning. Supervised learning is
one of the most used group of techniques that depend on having the answer to the problem. We
need to pair the input to a specific output. For instance, if we want to create a model to predict if a
patient will respond to a specific treatment, we need a dataset with that information for hundreds, if
not thousands, of patients in order to train a supervised model. Unsupervised techniques, on the
other hand, will be able to cluster groups with specific patterns from unstructured datasets even in
the absence of a desired output. Especially in cancer care, unsupervised learning is quite useful.
Reinforcement learning has been used recently in imaging analysis for training agents to do specific
tasks. This type is mostly used for teaching computers how to play games, but it can also be
employed in healthcare, albeit less so than the first two. All of these three techniques can be applied
to medical images, through a subfield of Al called Computer Vision. They can also be used and
applied to medical texts using the technology of Natural Language Processing.
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In terms of cancer risk estimation, the authors of a paper published in Radiology in 2019
developed a supervised deep learning model based on mammography, which showed to be
significantly more accurate than the risk model most used today, the Tyrer-Cuzick (IBIS tool). Their
model does not use Al to detect if there is cancer in the current mammogram, but to predict if a
patient will develop it in the next 1 to 5 years. We know that breast density is correlated with the
risk of cancer, but this study found that patients with non-dense breasts who were assessed by the
model as high risk really were higher risk than those who had dense breasts but were predicted by
Al as lower risk. This is an interesting finding, because it indicates that it is not all about breast
density, there are other risk factors present in the mammogram.

Detection and diagnosis: The same team of researchers also published another study, in which
supervised deep learning was used to detect the presence or absence of cancer in a current
mammogram. It demonstrated that these models work well enough to be able to reduce the
workload of a radiologist. They are not as yet widely available and used in practice, but we might
gain in efficiency by using them in the future. The Prostate Gleason Score is a very important score
in clinical practice, that helps identify patients at a higher risk of severe disease. Radboud and the
Karolinska Institute promoted a Kaggle competition, the Prostate cANcer graDe Assessment
(PANDA) challenge, where they provided a big dataset of whole-slide images, so that data scientists
around the globe could try and develop the best models to predict the Gleason Score. We can also
use deep learning to classify images of skin lesions, for instance to predict if they are malignant or
not. This is an interesting application because it has the potential of a direct-to-consumer
application. It could be used not only by dermatologists but by patients themselves as a screening
technology. We are also developing deep learning models to detect polyps during colonoscopy.
Another application, which is not related to images, is Natural Language Processing (NLP) to reduce
time to treatment. At DASA, prof. Kitamura and his team use NLP models to read medical
documents, such as radiology reports, to identify specific diseases that need follow-up, thus reducing
waiting time for treatment. For instance, the time to treat breast cancer has come down to 15 days
from 60 days, which was the standard of care before this tool was implemented.
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Subtype classification: Cancer is a very heterogeneous group of diseases, and we can leverage a
specific unsupervised technique developed by Laurens van der Maaten and Geoffrey Hinton, called
t-SNE (t-distributed Stochastic Neighbor Embedding). As an example, prof. Kitamura took the study
“Validation of Whole Genome Methylation Profiling Classifier for Central Nervous System Tumors”
by Lucas Santana-Santos’s team. The researchers were able to identify different groups of tumours
based on their methylation profile. This was also applied for the medulloblastoma subtype
classification. Again, t-SNE was applied to clustering different subtypes of group III, and group IV
medulloblastomas.

A way we can use Al is to optimise treatment. For instance, we can try to predict responders to
specific therapies. In the article “Molecular determinants of response to PD-L1 blockade across
tumor types”, Romain Banchereau’s group tried to see if they could predict response to PD-L1
blockade. Unfortunately, it did not work the way they had hoped. We always think of AI as
something magical that brings new advances to medicine, but it is not always the case. These
techniques can fail. They are prone to bias, and they may not be able to generalise correctly. We can
also predict the prognosis. In a study by Dong Nie, imaging data were used along with
demographic and clinical data to predict the survival of patients with brain tumours. Although this is
not a ready to use tool yet, it is interesting because it offers a new perspective. Patients often want
to know how long they are going to live, and physicians cannot give them a precise answer. Using
machine learning models, in the future we will be able to be more precise in defining the prognosis
for each patient. Deep learning can be used to segment CT scans and help in the planning of
radiotherapy. Another interesting application is to obtain CT scans from MRI. CT scans are needed
to plan radiotherapy, yet sometimes cancer patients have undergone MRI but not CTs. Studies are
carried out to use a specific deep learning technique, called Generative Adversarial Networks or
GANSs, to create a CT image from MRI. It has been shown that the planning of radiotherapy based on
this synthetic CT works as well as if the patient had performed a real CT.

Another use of Al is to create new molecules or to find the best combination of drugs for a
specific kind of cancer. As we get access to more drugs to treat cancer each year, the question we
may want to ask is, what is the best combination of these drugs for each kind of cancer?
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There are many different and new ideas on how machine learning can be applied to improve cancer
care, but it is worth remembering that Al might not work outside of the data it was trained on.

The State-of-the Art of Al in Cancer Care: Opportunity, Bias, Barriers, and
Gaps

Aziz Nazha, Executive Director of Early Clinical Development at Incyte, US, started his presentation
with a brief recap of terminology. Artificial Intelligence is making machines think and do things
like a human without explicitly programming the machine. Machine Learning is teaching
algorithms with data. As already mentioned by prof. Kitamura, there are two main types of machine
learning, supervised learning, where we know the answer, and unsupervised learning where we do
not know the answer. A subset of machine learning is Deep Learning, which is a mathematical
modelling of the neurons in the brain. The neurons in our brain are connected to each other and fire-
up when we do certain tasks. The mathematical model for that is called Deep Neural Network. In
simple terms, in machine learning we have a set of inputs, which could be a set of data, an image, a
video, or a combination of these. An output is what we are trying to predict. There are two
categories of outputs: classification and regression. Classification can be binary, for instance
images of cats and dogs, or multiclass, when we need to classify three or more instances, such as
dog, cat, giraffe. A regression problem is a continuous number. For example, if 'm building a model
to predict the house prices in Philadelphia, that would be a continuous number. In between input
and output we have a machine learning algorithm or a deep learning algorithm. The problem in
healthcare is that everybody tends to focus on the middle, when in order to be successful we must
focus first on the output: what I am trying to predict and whether predicting that outcome will be
clinically meaningful. The next question should be the input, do I have the right data to answer that
question? Is my data biased? And then, the last question should be, do I have the right algorithm for
this?
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To see how Al can be applied to cancer research, dr. Nazha focussed on a method devised by his
team for a blood cancer called myelodysplastic syndromes (MDS). The way it is normally diagnosed
is with a bone-marrow biopsy to identify dysplasia. Then the disease gets staged. We take the
patient’s blood counts, the chromosome and then we have a staging tool that will enable us to define
patients with higher or lower risk of progression. We treat patients with aggressive cancers more
aggressively compared to lower risk cancers. But this paradigm has limitations. First of all, the
diagnosis of MDs is very subjective, and pathologists may be in disagreement. Also, predictions often
do not match the actual patient outcomes. And this situation is not limited to MDS, it is true for
other cancers as well. Today, we give chemotherapy without knowing which patient is going to
respond. We have uncertainty in predicting response or resistance to treatment. So, can we solve
some of these problems using AI? Starting from diagnosis, Keiko Sasada’s article published in 2018
showed that there is significant discordance in what different pathologists consider dysplastic. In the
study conducted by Christian Matek and others, the investigators dissected the cells inside each of
the bone-marrow biopsies they had taken, and fed those images to a deep neural network. Then,
they asked the neural network to identify dysplastic versus non dysplastic cells. The investigators
were able to achieve a robust model that enabled them to improve the accuracy of detection, albeit
the model was still struggling to differentiate the abnormal cells, as feeding the model with the
abnormal cells is still dependent on a human deciding whether or not they are abnormal.

But do we actually need bone marrow biopsies? In an international study, dr. Nazha and colleagues
used clinical and next-generation sequencing data to build a machine learning model to diagnose
MDS and differentiate it from other similar myeloid malignancies without relying on bone marrow
biopsy data. To build the model, genomic and clinical data were collected from three institutions in
the US and Europe. Cohorts and data were externally validated. The researchers then ran the data
through a machine learning algorithm. They asked the algorithm what the important features were
that impacted its decision, and from that they extracted those features and plotted them on a graph
to make sure that the variables were clinically important and that new information could be learnt
from the algorithm. Lastly, they built the final model. There are other rare blood cancers that look
exactly like MDS and sometimes it is really hard to differentiate. But this machine learning model
showed 95% accuracy against the validation cohort. Moreover, this model also explains why a given
patient has MDS or another blood cancer. And validating the model against an external cohort is
extremely important.
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What about predicting response or resistance to therapy? For MDS, there are two FDA
approved drugs, Azacitidine and Decitabine. About a third of patients respond to them, and it takes
about six months for the response. In other words, we are giving this chemotherapy without knowing
which patient is going to respond. Models built on traditional statistics, clinical data, genomic data,
were not robust enough to be used clinically. So, dr. Nazha’s team used a consumer-type
recommender system algorithm to try and predict response resistance to chemo. For instance, a
company can make a prediction of what movie a consumer is going to watch tonight on the basis of
the ones they have watched last week. Swapping consumers with patients and movies with genes,
the question becomes, can we predict response or resistance to chemotherapy? By using this
recommender system algorithm, the team was able to identify genomic biomarkers that predicted
resistance to chemotherapy with 93% accuracy against the external validation cohort. The
researchers identified leukaemia cells that have certain genomic biomarkers and treated them with
Decitabine and showed that these cells have primary resistance to chemo. They built a platform that
uses Al and CRISPR/Cas9 to identify in silico signatures that predict resistance, to then test the
results in the lab, and finally apply these models in the clinic.

Among the current major challenges of Al in healthcare is explainability. Besides being told an
output a physician needs to understand the reason for that output. If a model predicts that a certain
patient is going to be readmitted to hospital, the physician needs to know why. Another important
aspect of explainability is that sometimes we need to know what the algorithm is using to make a
decision, because it may be using wrong data or looking at the wrong detail in an image to make
that decision, thus coming up with incorrect outputs. Another problem is reproducibility. if I build
a model in a healthcare system using my data, can I apply the same model in a healthcare system in
the United States or even around the world and reproduce that same result? Very often not, I cannot
reproduce the same accuracy, the same model, using a different patient cohort. This is problematic,
and it explains why we still do not see many algorithms applied in hospitals, even if they are FDA-
cleared. Bias is also a serious topic, that is not talked about enough. There are different kinds of
bias. Bias could be in the data. If I build a model on only white patients, can I apply it on African
American patients? Perhaps not. We can have bias in the algorithms, meaning the output of the
model is biased toward minority, males versus females or other prospects. If you start with bias data,
you get a biased model. Sometimes, there is also bias in using certain algorithms instead of others
that could produce different results. Fairness goes along with bias to a degree. When an algorithm



recommends something for a patient, is it a fair recommendation? Are we denying some patients
access to life saving treatments? Regulatory approval is still problematic. Although the FDA has
cleared many algorithms, it still does not mean they have been approved. Another crucial challenge
is implementation in the workflow. Sometimes we do not have a robust algorithm, but we try to
implement it in healthcare anyway, other times the hospital does not have the infrastructure or
personnel trained to implement it and monitor it. Lastly there is the so called model drift, when
models perform worse in time. We need to monitor the model, and if its accuracy starts to drop, we
need to retrain it. So, these are the challenges from a technology perspective. What about patient
concerns? Studies have shown a number of apprehensions patients have about the application of Al
in healthcare. They are concerned about the safety of the algorithm; the potential threat to patient
choice; a possible increase in healthcare costs caused by the introduction of new technology. And,
again, data-source bias. But the main challenge is lack of talent. We need people who understand
and speak the language of healthcare, but are also that of Al, we need physicians and researchers
who are also computer and data scientists with a deep understanding of both fields. To this end, dr.
Nazha and his team have just launched a course to teach students, residents and fellows how to do
machine learning in Al using no-code or low-code. They set up the ambitious goal to train 10.000
healthcare professionals by the end of the year.
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If we want to improve the outcome for our cancer patients, we have to embrace technology, and
change how we think about healthcare today. Al is transforming our lives. We all use it every day.
There is a huge opportunity for Al in healthcare, and more specifically in cancer. Of course, there
are still limitations, but hopefully they will be overcome in the nearest future. And then, one
important point to keep in mind about Al and ML in healthcare is that it is a collaboration between
human and machine, with the same goal in mind, better outcomes for patients.

Value of Al in Cancer Care: a Systematic Patient-Oriented Innovation

The third speaker was Fabio Ynoe de Moraes, Associate Professor at the Department of Oncology
Queens University, Ontario, Canada. Currently, we have three major problems in oncology care. One
is that although medical knowledge is growing fast, we still need to make oncology more precise and
accurate. We constantly hear about precision oncology, personalised medicine, but we are not quite
there yet. The second point is that the patient journey is still very challenging. The patient should
play a central role in decision-making. We need to expand access to medical knowledge and to
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support value-based medicine. Last but not least, healthcare professionals need help. They are
mentally and physically overwhelmed, and computers can help them improve their daily activities.

Cancer incidence is on the rise. In 2007, around 13 million people worldwide were living with the
disease. By 2030 we are expecting to almost double that number, 22 million people. This is largely
due to a growing and ageing population, as well as lifestyle changes. But the numbers can vary
dramatically across countries and ages, and access to care is unequal. Healthcare professionals are
stressed, overworked, and spend a lot of time dealing with bureaucracy and tasks not related to
patient care. We need solutions. We need to promote patient-centred care, good use of data and
innovation. Patient-centred care is where the care is organised around the comprehensive needs of
a patient rather than just their disease. Innovation does not necessary mean doing something new,
just doing it better, more effectively, being able to solve problems in a simple way that is fast and
efficient. Computer processing capacity has increased at least 80-fold in the past 20 years. We know
that hospitals are an important source of big data, if we can access it. However, the human brain is
not capable of dealing with the amount of information that we are generating. It can only consider
five facts per decision, while now we are dealing with thousands and thousands. In 2022 computers
are an integral part of our healthcare system. Al is on the rise, yet it is still far from being
generalised clinical practice. We are now generating larger amounts of data in oncology, but they
need to be better standardised. We need regulatory frameworks and solutions to tackle diversity,
equity and so on. We need to conquer data and build a culture of innovation so we can implement Al
in practice. We will be facing a data tsunami, we cannot stop it, but at least we can prepare for it. To
apply Al to the real world, we need to create and cultivate data sources, harvest information, and
feed valuable knowledge. We also need to do this fast, in an agile cycle.

Farming is a useful analogy for the process of creating outcome databases in healthcare. First, we
need to cultivate data sources, by standardising inputs and processes. When we begin to get a good
amount of data with high-volume and variability, we need to harvest that information, so as to make
sure we can work with and understand these data. Thirdly, we are going to feed knowledge that
improves patient care. Making sure that we have the right process to implement Al in practice takes
time. But if we do it well, we can harvest quite a good number of projects and data. It is all about
first things first, and the first thing that we must start from is a standardised nomenclature in
documenting, communicating, contouring, planning and reporting. We need to improve how we
document things on the electronic health system, on imaging, et cetera. And standard data entry
must be quick and easy. We now have multiple sources of documents that can help us with minimal
datasets, nomenclature standards, etc. To bring Al into the real world, we need to have good
practices. And in order to have those we must remember a couple of things. First of all, we must
ensure that the data we are working with is relevant to the practice, that it is acquired in a
consistent, relevant, and generalisable way; that it aligns with the intended research question; that
there is appropriate separation between training, tuning, and testing datasets; and that there is an
appropriate level of transparency in the output algorithm. We do not want a black box that does not
let us know where the data comes from, how to assess it, and if it makes sense. To avoid that, one
approach is to define a clinical problem and develop an algorithm that comes from real world clinical
data, test it in local studies, go to clinical trial, and then proceed to clinical registration and finally
clinical deployment. The journey of developing something that will be applied to clinical practice is a
long and difficult one. We need to focus on important problems and work together to extract, select
and refine data, and then, we will be able to test it, compare it and use it together with humans. At
that point, potentially we will need to go to prospective clinical validation. Another systematic
approach that has been used is to have platform processes embedded in the electronic health
system. So, we can collect standardised data, pre-process them and then start using them to help
predict outcomes. DISCOVERY Al, for instance, houses various modular Al tools to process data in
order to make predictions. Modules can be diagnosis, readmission, complications, and so on.



The ER at Queens University now runs an algorithm that can predict with a high degree of accuracy
the number of patients who will visit the Emergency Department within the next 48 hours. That way,
they can plan how many physicians, nurses and other healthcare professionals are needed to be on
call. It is important to have this kind of set-up in place so we can leverage all the data that the
hospital, the ER, or the cancer centre is generating in a way that will in future have an impact on the
running of our clinic. Another way to systematically approach the problem is to build a big database,
a so-called digital knowledge database. These databases in cancer care are very important because
they will allow us to collect patient demographic, personal and clinical data, and past clinical
decisions and outcomes, and make best decisions on management. After we have these data, we will
need to harmonise and preprocess the data so that they will be analysed and worked with a machine
learning process. Then, we will potentially be able to synthesise the results, and create algorithms
that will help physicians in the clinic. All of these systematic approaches take time and commitment,
and they all start with standardising the way that we collect and work with data.

Conclusions

v Al is changing our lives
v Al can advance cancer research/Medicine
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Looking at some applications of Al in oncology, an international collaboration that prof. de
Moraes worked on is a good example of a model that does not require particularly complicated
algorithms. Regression models can do very important work when based on good data. The team
worked with about 20,000 patients, 1 million unique data points, 55 centres, two external validation
datasets, and they were able to create nine unique groups for staging prostate cancer, taking into
account age, stage T category, N category, Gleason Score and so on. This system is AJCC-compliant
for clinical prognostic staging. With this kind of work, we are making cancer care more precise and
more personalised. Another example, this time on how to bring Al to planning in radiation oncology,
is a prospective study led by Chris Mcintosh in Toronto, where they deployed and evaluated a
machine learning algorithm for therapeutic curative-intent radiation therapy (RT) treatment
planning for prostate cancer. ML and human-generated RT treatment plans were compared in a
retrospective simulation and treating physicians assessed those plans in a blinded manner. 89% of
ML-generated RT plans were considered clinically acceptable. RT planning with ML also reduced the
time required for the entire process by 60%. This would mean freeing up space for humans to do
other kinds of work or to engage better with their patients. Some of the areas in which we can apply
Al to radiation oncology in the real world, if we have established a framework are: help in treatment
decision, imaging, treatment planning, RT delivery, prediction of response to treatment. A recent
study by colleagues in China shows that Al for segmentation of nasal cancer can decrease the time
of contouring from about 38 minutes to 8 minutes and can also reduce more than two-folds inter-



observer variability. Follow up is something else that we are working on to make sure that we catch
recurrence or toxicity before it even arises.

Limitations and challenges in moving from paper studies to the real world are, first of all, data
acquisition and standardisation. Often, we do not have enough data because it is siloed within
institutional centres. Other issues are privacy and security, competition between institutions and
lack of data-sharing infrastructure. We have now guidelines proposed to support FAIR (findable,
accessible, interoperable, reusable) data use. However, as mentioned by dr. Aziz, we have lack of
human resources. We need to train people and free up their time so they can apply this kind of
analysis in their centres. Healthcare is under pressure. Patient-centred care, data and innovation are
the driving forces for improving healthcare. Advancement in oncology and Al presents opportunities
for a major clinical impact, but we need to focus on generating evidence, supporting places in need
and teaching the next generation.

What is New in Al in Cancer Care: Progress and Regulatory Perspectives

The final speaker was Nishith Khandwala, Co-Founder of Bunkerhill Health, Palo Alto, US. The
journey from research to clinical practice for an Al algorithm in healthcare starts with building a
proof-of-concept algorithm, one that we have perhaps trained and tested on our local dataset. After
that, in order to assess how the algorithm performs on data from other scanner manufacturers,
other patient population, etc., we need to validate it on external data from multiple hospitals. Once
verified that the algorithm performs consistently well, we must prove its clinical or financial utility.
Typically, this is done via a clinical trial, which should demonstrate how the algorithm improves the
current standard of care. With that data, we can file for those regulatory approvals that are
applicable and necessary. Once we have regulatory clearance, we can distribute the algorithm for
clinical use and for prospective use by physicians. This presentation focussed on the regulatory
stage, notably in the US. For the sake of this talk, dr. Khandwala made a couple of assumptions, that
the type of algorithm falls under the FDA’s Class II (medium) risk level (if the algorithm requires a
physician supervision or if a physician has the ability to override its result, it likely falls under Class
I1.) Another assumption is that the FDA understands how to evaluate the algorithm that we are
submitting, as they have previously validated a similar one, and understand the positives and
negatives of the validation study that we are submitting. If these assumptions hold true, the FDA has
an accelerated pathway called the 510k process, whereby the algorithm developer demonstrates
that their algorithm is similar to one the FDA has evaluated and approved in the past.

The FDA has developed tighter timelines to ensure that innovation does not get delayed and reaches
the market as soon as possible. So, when we submit our device to the FDA under the 510k process it
should take roughly 90 days for them to contact us and tell us whether they want to reject the
application, put it on hold or need additional information. At this point we can interact with the FDA
to further the application. And the outcomes can be clearance, or the FDA determines that this is not
a device that they are familiar with in terms of how to validate it, and in that case, we need to go
down a much lengthier process in order to get clearance. So, what does a 510k application docket
look like? What pieces of information need to go in it? The first is indications for use. The FDA
does not just clear or approve an algorithm, but an entire product, which involves how we expect it
to be used. An algorithm that is used under physician supervision and an algorithm used
autonomously, are both ways in which a singular algorithm can be used. And the pathway or
regulatory evidence required to support the two is vastly different. The next part is the substantial
equivalence discussion. Since we are claiming that the FDA has already approved or cleared a
similar device to the one we are submitting, we need to show equivalence between the two. Then the
FDA also requires a section on software. What is the software composed of? How was it created?
Under what sort of software engineering paradigms? If this is an Al algorithm, as would be the case



in this discussion, what training dataset was used, what validation dataset, what type of algorithm?
Was it a convolutional neural network, a transformer algorithm? Finally, perhaps the longest section
and the most statistically inclined one is the testing itself. Based on the sophistication of our device,
and on what the device that we are claiming substantial equivalence to has done, we might be asked
to show evidence on both bench testing and clinical front.

As a case study, dr. Khandwala took a company called Optellum. They have a device that looks at
incidental pulmonary nodules on chest CTs, especially the ones that have indeterminate risk
categories, and suggests how to manage patients with those types of nodules. The tool takes in a CT
scan, then the physician, usually a radiologist, tells the algorithm which nodules to focus on. The
algorithm then predicts a risk score, and this leads to potentially optimal care for those patients.
Typing “Optellum” on the online FDA 510k clearances database brings up a record containing
information about the company and details of the algorithm. Clicking on “Summary” we can find in
the indications for use that the algorithm characterises incidentally detected pulmonary nodules. It
also tells us who the users are: pulmonologists and radiologists only. It also specifies that the input
to the algorithm is a CT image. What is the output? It is a single value proprietary score. And then,
finally, it also talks about the inclusion-exclusion criteria. We are only looking at patients who are
35-years or above. In short, the indications for use talk about how an algorithm becomes a product.
Looking at the substantial equivalent section, Optellum’s algorithm was compared against another
algorithm from a company called QuantX that looks at mammograms, detects and assigns a risk
score to lesions on mammograms. From a user point of view, the two devices are quite different, but
from the FDA'’s perspective of risk-benefit analysis, they are actually fairly similar. Moving on to the
software section, first there is a diagram showing how the Optellum’s algorithm fits into the overall
workflow, from the browser clients to PACS, to a server inside the hospital datacentre and finally to
the Optellum cloud where the algorithm is hosted and orchestrated. The results come back to the
server inside the hospital network, and then to the physician who ordered the scan. The software
part also talks about the algorithm itself. There are sections on the convolutional neural network, the
training dataset, and the output. What kind of testing did Optellum perform? They did two types of
analyses for their algorithm. The first is a standalone testing, to show how the algorithm performs
on a standalone basis on a static dataset against their goal standard. The second is to show how the
algorithm improves the performance of the clinician. They looked at readers without the use of the
algorithm and then at the same readers when using the algorithm. The AUC went from almost 82%
to almost 89%, so a substantial improvement.

The FDA process for most algorithms is fairly clear. There are steps to expedite the process and
researchers should keep them in mind when developing their algorithms and designing their
validation studies, so that those algorithms can smoothly progress from research into clinical
practice.



