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Deep Learning yields surprisingly good
results when trained on weakly labeled
] data
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Digital pathology allows pathologists to diagnose and analyse tissue samples using digital images.
The technology has the potential to improve diagnostic accuracy, speed up the diagnosis process,
and enhance collaboration among clinicians. With the rise of artificial intelligence in healthcare,
digital pathology is becoming even more powerful, enabling pathologists to leverage machine
learning algorithms to detect patterns and make accurate diagnoses. In cancer diagnosis, digital
pathology and Al can revolutionise the way pathologists identify and classify cancer cells, leading to
more personalised and effective treatment options for patients. Some of these innovations were
discussed for specific tumours by three expert panellists in this sixth webinar of the SPCC
Educational Project on Artificial Intelligence in Cancer Care 2022, which took place on 20 March
2023, and was chaired by Giancarlo Pruneri, IRCCS National Cancer Institute, Milan, Italy.

Digital pathology and Al applications for histopathological diagnosis and risk
stratification

Catarina Eloy is Head of the Pathology Laboratory of IPATIMUP, Researcher at i3S, Affiliated
Professor of Medical Faculty at Porto University, and Vice-president of the Portuguese Society of
Anatomic Pathology, Porto, Portugal. The near future for digital pathology and Al is very promising,
many changes are happening in this field and expectations are high. Expert consensus is overall
positive regarding the implementation of Al resources, but we must remember that many of the new
tools and technologies are not as yet mature for blind clinical usage. Our pathology labs are still
following a 19th century paradigm. We have many manual processes with their inherent issues. Even
the new generation of instruments has obsolete designs. We need more standardisation and
automation. Penetration of digital transformation is still low. And we need a new quantifiable
chemistry to obtain better performance with biomarkers, etc. In other words, the technology is here,
but we need to get ready for it.


https://www.oncocorner.net/webinars/354?utm_source=CW&utm_medium=website&utm_campaign=EventsPage

Quality is a crucial starting point. If we have good quality material in our pathology labs, we’ll
probably have good conditions to perform computational analysis, and this includes the usage of Al
tools. The same applies for metrology. Metrology is a science that does not collect many fans
among pathologists, but if we start using it in our labs, we can achieve the level of standardisation
and quantification needed for an unbiased Al performance. We must rethink the way we run our
pathology labs with simple things such as using a lean approach, doing measurements and
quantification of the processes so that we can achieve standardisation. Validation and calibration
policies should be in all our practices as well as an error-detection oriented plan of action. Time is
also crucial. We cannot forget our obligations to our patients, which include respect for the
turnaround time. The system needs to be fast, the faster the better. Poor laboratory information
systems are one of the major obstacles for implementation of an effective quality control system. The
same applies to tracking systems. A vast number of labs do not track their samples. The same, again,
for production control. If we do not control what we are producing, how can we know we are making
the best quality whole slide images for computational pathology?

Lab paradigm from the XIX century
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We must have innovative interventions in all workstations of the pathology laboratory, as well as
before and after the analytic process. Clinicians need to help pathologists by providing very good
material with pre-analytical conditions, to avoid issues during the standardised processes. All steps
should be balanced, not just the whole slide image production. A very good whole slide image (WSI)
enables us to use its plasticity, share, work remotely, ask for second opinion, and move forward to
computational pathology and Al. The utilisation of Al techniques to extract all the data present in a
basic tissue section stained with haematoxylin-eosin (H&E) signifies a genuine epistemological
revolution. This includes the use of computer-aided diagnostic tools for diagnosis, staging, or
extraction of other prognostic relevant data based on morphology (Quantification). Additionally, it
opens up avenues for research, such as identifying the causal agent or pattern of a disease
(Taxonomy), and the development of algorithms that can predict molecular biomarker status, which
can be useful in selecting appropriate therapy (Markers).

Prof. Eloy’s group has published a number of papers that show what precise CTs can achieve. We
have the capability to employ deep learning techniques to analyse morphological characteristics and
extract features from basic H&E stains, such as predicting PD-L1 status. As other research groups



have demonstrated, we can assess mutational status through the use of radiology images, including
tomography, as well as H&E staining. This is particularly useful for triage purposes. However, it
should be noted that these features have not yet been deemed safe for use in clinical practice. The
goal of precision medicine can only be achieved through the integration of tissue architecture with
various -omics approaches, such as genomics, transcriptomics, proteomics, and more. By combining
all these omics data in situ, alongside clinical information, we can generate a wealth of information
that can pave the way for precision medicine. Achieving this level of integration and analysis is only
possible with the aid of Al. Our past experience with artificial intelligence tools did not yield the
level of accuracy we had hoped for, leaving us dissatisfied. However, with the passage of time and
the use of more recent software, we have observed extraordinary improvements in accuracy.

Our studies have also shown that working in synergy with Al enhances our capabilities.
Collaboration is key to achieving better results. While Al performs exceptionally well in certain
circumstances, there are also situations where it can make mistakes, and it is important to avoid
prolonging any errors. This is why more general laws, such as GDPR, have been established to
protect patients from the usage of Al alone. Colleagues in radiology have also recognised that
autonomous systems can increase the risk of systemic errors. Therefore, it is essential not to use Al
tools in isolation. Synergy is the best approach to ensure that we work with Al effectively, while
keeping patient safety as a top priority. It is essential for us to have explainability of artificial
intelligence in medicine, particularly in pathology. We need to have a thorough understanding of the
algorithms we use, of what we are seeing, and of how we can control this. Without such knowledge,
we would be relying on faith or religion, rather than science. Therefore, we should take advantage of
these new tools not only to enhance our understanding of how to use them, but also to gain insights
into the diseases we study.

Prof. Eloy’s experience using a commercial software with her team was very positive, and they
published the results in Virchows Archiv. They tested Paige Prostate on a number of cases and found
that it did not improve accuracy in diagnosing cancer or enhance diagnostic skills. However, it did
significantly reduce observation time by 22% in both negative and cancer cases, while also reducing
requests for immunohistochemistry by 21% and second opinions by 39%. This acceleration in the
diagnostic process is highly relevant and warrants our attention. Although the software may not
have other purposes on its own, Al’s ability to accelerate the workflow is valuable and should be
considered for implementation.

In sum, we need to fully adopt digital pathology in our laboratory as it is crucial for the development
of artificial intelligence and computational pathology. Without it, we impede the progress of
pathology and hinder our patients’ access to important technology. Moreover, it is important to
strive for a synergistic use of Al and pathology, where human pathologists and software complement
each other and become stronger. As these algorithms mature for proper usage, they will offer
impressive advancements for our patients.

Al applications in colorectal cancer

Jakob Nikolas Kather is Professor of Clinical Artificial Intelligence, Else Kroner Fresenius Center
for Digital Health, Technical University Dresden, Dresden, Germany. The Clinical Artificial
Intelligence research group is a diverse team of scientists with a clinical perspective on health and
disease. They use artificial intelligence and computational modelling, to extract valuable information
from clinical data, with a primary focus on precision oncology, solid tumours, and immunotherapy.
They are global leaders in predicting clinically relevant tumour characteristics using routinely
available histopathology slides.

Patients generate various types of data in clinical settings. There are two main categories of data:


https://link.springer.com/article/10.1007/s00428-023-03518-5
https://jnkather.github.io/

structured data, which includes organised information such as blood pressure values, which can be
entered into a spreadsheet, and unstructured data, which is more complex and consists of images
and free text. While structured data can be analysed with simple machine learning methods or
even manually, unstructured data requires more advanced techniques to be effectively processed.
It is quite astonishing to note that prior to the 1990s, it was extremely challenging to train
computers to work with images and text, and there were no practical solutions to teach computers
to automatically analyse images. However, this has drastically changed over time. Since 2012, we
have convolutional neural networks that can analyse images with human expert-like performance.
Moreover, with the advent of large language models in 2021, computers can now efficiently analyse
any text with human-level accuracy. These advanced technologies can be utilised to address clinical
issues.

Specifically focussing on image data, in oncology we have a diverse range of images available for our
patients. Skin lesion photos are a common type of image, and a paper published in Nature in 2017
was among the first studies to employ modern Al techniques, such as convolutional neural networks,
to analyse these images for skin cancer diagnosis. Additionally, we have endoscopy, radiology, and
histopathology image data at our disposal. What is particularly fascinating about histopathology is
that the routinely scanned slides are incredibly large in size and contain an abundance of
information, far exceeding that of a whole chest CT series with multiple slices.

Structured and unstructured data
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Prof. Kather presented some examples of colorectal cancer detection using endoscopy. Identifying
polyps during colonoscopies is a repetitive task that can be automated with convolutional neural
networks. In fact, there are currently at least four systems available in Europe that can be
purchased and utilised in clinical settings to detect polyps. Artificial intelligence has become the
clinical state-of-the-art in preventing and screening for colorectal cancer. Likewise, in
histopathology, several Al-based algorithms have been approved for clinical use, either by the FDA
in the US or the CE IVDR regulation in the European Union. Numerous vendors sell these Al
algorithms, and the only thing that is currently lacking is the digital infrastructure in pathology
departments in Germany and other nations to enable their deployment. However, these Al systems
have received clinical approval and can be implemented in histopathology as part of routine clinical
practice. The Clinical Artificial Intelligence research group, being an academic research team, does


https://www.nature.com/articles/nature21056
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not engage in the creation of any products, but rather aims to generate innovative ideas that may
eventually be incorporated into a product in 8 to 10 years or more. Although this is a long-term
process, occasionally things can progress very rapidly, and some of their concepts have already been
used to inspire or fuel products within just three to four years.

When considering the application of artificial intelligence in histopathology, we typically identify two
different types of problems. The first is strongly supervised prediction problems, in which
annotated image data is used to train machine learning algorithms. In this method, pathologists
manually annotate the images, marking regions that are known to contain tumour tissue. The
annotations serve as strong labels for the machine learning algorithm, indicating which pixels in the
image correspond to tumour tissue and which do not. By using these strongly supervised labels, the
machine learning algorithm can learn to identify and classify tumours tissue with high accuracy. As
an alternative, we often prefer to use weak supervision, where the label is typically assigned to the
entire slide, rather than individual pixels within the slide. For example, suppose we have a dataset of
10,000 images of prostate biopsies, and know that 5,000 of them contain cancer somewhere in the
image, while the other 5,000 are benign. In this case, we would have an image-level label for each of
the 10,000 images indicating whether it is cancerous or benign, rather than individual pixel-level
labels. Deep learning systems can now be trained on these types of images and still perform very
well, which is why we tend to favour this approach. One of the benefits of weakly supervised
prediction methods is that it is easy to change the label being predicted. For example, instead of
predicting which patients have cancer and which do not, we could input survival data and use that
as the label for prediction. By doing so, we can train our deep learning system to identify more
complex biomarkers in the slides, which is incredibly exciting.

Prof. Kather and his group have utilised the weakly supervised prediction approach in much of their
research. In 2019, they conducted a study using deep learning to forecast microsatellite instability
from histopathology images of colorectal cancer, endometrial cancer, and gastric cancer. The
outcomes demonstrated that this method works well. It was not surprising since we already knew
that microsatellite instability in these types of tumours causes particular phenotypes, but it was
significant as it demonstrated that we could predict genetic changes directly from H&E pathology
slides. Since then, the team has extended their weakly supervised prediction method to include
many other biomarkers beyond MSI. The method was published in 2019 and has since led to
regulatory approval of a related product by Owkin. The product uses the method to predict the
microsatellite instability status with a certain accuracy from histopathology slides in colorectal
cancer, and it can be used as a pre-screening tool before definitive testing. Although there is a
conflict of interest here, the approval of this method for diagnostic routine in Europe is a significant
milestone. Hopefully, it will be extended to include many other biomarkers in the future. Recently,
the team performed a large-scale analysis of multiple biomarkers in various tumour types. They
examined point mutations in relevant genes across multiple tumour types to see if they could predict
mutations in these genes directly from H&E histopathology using deep learning. The researchers
found that this method works well for predicting clinically relevant genetic alterations. They also
noted that the genotype of a tumour is reflected in its phenotype and, in some cases, can be
predicted using deep learning methods just by analysing the phenotype.

A related application of the same technology involves predicting survival in colorectal cancer. In
recent years, various research groups, including Prof. Kather’s own, have used deep learning
methods to build systems that can predict overall survival or relapse after curative surgery based on
histopathology images. Again, this is not surprising because we know, for example, that if a patient
has a lot of lymphocytes in their tumour and are operated in curative intent, their prognosis is better
because the tumour was quite immunogenic, and they are less likely to get a relapse. So, for
example, just the abundance of lymphocytes is a good prognostic marker in colorectal cancer, but



there are many others, and by analysing features such as stroma phenotypes, differentiation etc.,
these deep learning systems can predict the likelihood of relapse and survival. From a researcher
point of view, these methods have the potential to not only be used as clinically relevant tools, but
also to make scientific discoveries. Particularly interesting is the ability of these methods to visualise
the spatial heterogeneity of mutations in tumours. In one of the studies conducted by the group, they
demonstrated that these systems can not only predict mutations in a given gene from
histopathology, but can also generate spatial prediction heat maps that are consistent with spatial
sequencing methods.

Multimodal models are a significant topic in the field of Al, where various types of data are
combined to create a single model for prediction. Prof. Kather contributed to a study led by
Sebastian Foersch from Mainz, Germany, developing and validating a deep learning model. The
model takes into account both H&E slides and immunohistochemistry slides of colorectal cancer to
predict survival and relapse. In general, deep learning methods can be utilised on histopathology
slides of various tumours, including colorectal cancer, for two distinct purposes. One is to develop
clinical biomarkers that may eventually gain regulatory approval and be used in routine clinical
practice. The other is for scientific discovery. The team recently published two reviews where these
ideas are discussed in more in detail (https://www.nature.com/articles/s43018-022-00436-4 and
https://aacrjournals.org/clincancerres/article/29/2/316/713971/Facts-and-Hopes-on-the-Use-of-Artific
ial).

Looking at the overall field, there has been an exponential growth in technical capabilities for
analysing unstructured data, such as image and text data. Prior to 2012, classical statistics and some
machine learning methods worked well for linear regression and predicting future developments in
time series. However, they were not suitable for analysing image data. The development of
convolutional neural networks between 2012 and 2021 allowed for the extraction of value from
image data. Since 2022, the field has taken another turn, with much larger and more capable models
that can generate images and make predictions without being trained on a specific problem, known
as zero-shot predictions. These advancements are only the beginning, and in the upcoming years,
there will be further developments in AI methods. The role of medical professionals and researchers
will be to ask the right biomedical questions to utilise these advancements effectively.

Digital pathology biomarkers for breast cancer

Arvydas Laurinavicius is Professor of Pathology at Vilnius University and Director of the National
Centre of Pathology, Affiliate of VULSK, Vilnius, Lithuania. Continuing on the topic of digital
transformation in pathology, we can see two major benefits. The first is to enhance the digital
workflow by improving the manner and method in which we work. The second involves obtaining, or
computing, new knowledge from the rich data available. Thinking about what type of new
information we can retrieve from images, applications can be categorised into several groups. One
group addresses technical support in pathology, such as object detection and IHC quantification.
Another one deals with the automation of the pathologist’s capabilities, such as tumour detection,
subtyping, and grading. However, the most exciting aspect of computational pathology lies in its
ability to extract visual information that cannot be detected by pathologists as human beings. For
instance, computational pathology can be used to predict genetic alterations, survival, and response
to therapies.

There are two basic pathways for obtaining new information, one of which is more traditional and
involves image analysis, image analytics, and statistical disease modelling. The other involves using
deep learning to extract features. The first method is explicit, hypothesis-driven, human engineered,
while the other is implicit, hypothesis-generating, and presents issues with explainability. Of course,
there may be a combination of both pathways. With this feature extraction method, we aim to
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predict diagnosis, prognosis, response to therapies and all of the other features of tissue pathology.
Basically, we seek to extract and measure hidden or subvisual pathology features in the spatial
context of tissue microenvironment. Prof. Laurinavicius presented two hypothesis-driven, image-
based, computational models or digital biomarkers, which help us to detect and measure
intratumour heterogeneity and to assess tumour-host interaction.
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Why is intratumour heterogeneity important? Tumours are comprised of various cancer cell
clones, some of which are more aggressive, some may be responsive to certain therapies, while
others may be resistant. This heterogeneity poses a significant challenge for targeted therapies, as
attacking one type of cell may leave others unaffected and able to proliferate, ultimately resulting in
patient harm. Looking at a typical scenario, the pathologist needs to identify a hotspot of
proliferative activity in a breast cancer sample. However, there are different definitions of what
constitutes a hotspot, and it can be a sub-visual feature that is difficult for humans to identify. This
can lead to sampling errors when trying to measure the most proliferative part of the tumour. In
conventional pathology we use a tube microscope to make semi-quantitative assessments and
produce one or two figures of the whole tumour. A while ago, Prof. Laurinavicius and his team
speculated about whether it would be possible for a robot to perform multiple machine readings of
local proliferation rates. To accomplish this, they utilised a hexagonal grid to sub-sample the local
proliferation rates, and obtained more extensive data. The reason for using hexagons is that they are
the most compact regular polygons that can tile the plane, resulting in more effective circle
coverage. Also, they provide uniform distances between cells, which is crucial for measuring
Haralick texture entropy, which in this case is surface measures of intratumoural heterogeneity. The
team obtained a comprehensive data set from just one Ki67 slide, with over 20 indicators
representing different properties of what they were measuring. It is even possible to map back the
local proliferation rates to see where they are located within the tumour. They also introduced the
concept of a Pareto hotspot, which identifies the 20% hottest and most proliferative areas in the
tissue. Additionally, it is also possible to visualise histograms that show the roughness of the
proliferative surface of the tumour and provide quantitative expressions of these features. This helps
us to understand the heterogeneity of the tumour.

The researchers later tested this model on a Nottingham breast cancer patient cohort to predict



patient survival. They had hypothesised that the proliferation percentile or Pareto hotspot would be
the most useful predictor of patient survival. However, they were surprised to find that the
bimodality of heterogeneity of proliferation was actually the most powerful predictor. The data also
suggests that intratumour heterogeneity may be more significant than the level of biomarker
expression in predicting patient outcomes. Next, Prof. Laurinavicius and his group looked at a
patient cohort in hormone receptor-positive cancer and investigated six units of chemistry
biomarkers. They used prognostic modelling to create a multiple regression model - the Cox
regression model - that relied exclusively on immunohistochemistry data. No clinical or pathology
data was required for this model. The model is based on three independent predictors: proliferation
bimodality, immune response, and the surprising finding that higher progesterone heterogeneity is
associated with better survival. High progesterone entropy or heterogeneity appears to be a feature
of better survival, while low or high expression rates are associated with less favourable outcomes.

Moving on to the next model presented by Prof. Laurinavicius, the tumour-host interaction has
become increasingly important in the age of precision immuno-oncology. Modern immunotherapies
have demonstrated added value in terms of improving long-term patient survival, by highlighting the
significance of understanding the mechanisms of this interaction. There are numerous methods to
measure immune cells, or tumour immune contexture, in the tissue. Some studies measure distances
between tumour cells and lymphocytes, clustering of lymphocytes. Other methods include assessing
individual distances between different cells, multiplexing data, detecting the immunotherapy
invasive margin, and analysing the spatial distribution of infiltrating immune cells. In a previous
study, the team investigated where the tumour-host interaction happens and hypothesised that it
does not occur along a linear or ribbon-like structure, but rather in an area, which they termed
interaction or interface zone, a 2D projection of a 3D tumour stroma interface. To identify the
edge of this zone, they applied a hexagonal grid and used single immunohistochemistry for CD8.
They then utilised the HALO Al tool for tumour stroma segmentation and positive cell detection,
followed by a computational assessment of the image analysis outputs. The process involves two
main steps. First, we explore a cell, the contents of each hexagon and the surroundings of the
hexagons to compute the probability of “interfaceness” of each hexagon. The resulting edges
indicate the areas of highest probability. Subsequently, we analyse patient information from the
host, stroma, and deeper regions of the tumour. This enables us to compute the local or rank
densities of tumour-infiltrating lymphocytes. Various tumours display distinct profiles; some exhibit
a drop in density upon entering the tumour, while others exhibit the opposite effect. Additionally,
certain tumours feature lymphocytes that stop at the edge and do not penetrate the tumour. The
team applied several indicators, such as the centre of mass, to quantitatively assess this
phenomenon. These indicators, which they termed immunogradient indicators, reflect the propensity
of lymphocyte infiltration into the tumour. A heat map shows the significant and selective sampling
area where we can calculate these immunogradient indicators. The researchers tested this
approach in parallel on patients with breast cancer and colorectal cancer and obtained similar
results, with the new indicators having high prognostic significance.



Image-based, computational biomarkers/models

1. Intratumor Heterogeneity 2. Tumor-Host Interaction

To illustrate one of these features we can look at the cohort of patients with early hormone receptor-
positive breast cancer, which is a well-managed disease. If we examine the survival rate of these
patients five years after undergoing surgical excision, we see that 92% of them have survived. But
what happened next? Those patients who had low immunogradient at the time of surgery, had a
much worse survival rate, 55% compared to 87%. This highlights the importance of assessing
lymphocyte distribution in this non-aggressive type of cancer, which predicts long-term survival.
Another interesting phenomenon was found in CD1 images of a patient cohort of HER2 borderline
FISH-negative patients, revealing three independent prognostic features that, when combined,
allowed for powerful patient stratification. This demonstrates how one image can provide valuable
prognostic information by retrieving multiple biomarkers and combining them into a single model.
Additionally, intratumour heterogeneity of HER2 membrane completeness and oestrogen receptor
were also features associated with better patient survival in other models of the same patient cohort.

Going back to the concept of intratumour heterogeneity, which may be equally or even more
important than the level of biomarker expression, Prof. Laurinavicius quoted from a study which
explored these features in the genetic testing of various tumours: “Quantification of ITH is a key
measure of tumour evolution.” This is a universal prognostic biomarker, albeit potentially non-linear.
To summarise, these findings are consistent with similar results found in other solid tumours. The
research group has investigated over 800 patients and the message that can be inferred from this is
that spatial heterogeneity may be outperforming the level of biomarker expression in various
situations. Measuring gradient for spatial and directional distribution of immune cells at the tumour-
stromal interface is more informative than absolute TIL densities in the tumour microenvironment.
Furthermore, it can also be demonstrated that IHC-based models can be achieved, which commonly
outperform the conventional parameters used in clinical practice today.

During the panel discussion, the implementation of digital pathology was discussed, with a focus on
the challenges that must be addressed. These obstacles include changes to structure, mental
adaptation, cost, integration of image and laboratory management systems, cultural transformation,
and shortages of pathologists and lab technicians. The speakers emphasised that political will and
investment are necessary for success. Additionally, the potential of artificial intelligence in pathology
was discussed in relation to patient stratification in clinical trials and the development of new
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biomarkers. Prof. Pruneri’s take home message was that digital pathology is likely to become a
crucial tool in medicine, but its implementation requires diversifying the team of professionals
involved and understanding ethical and regulatory issues. The cost of digital pathology is a
significant challenge, and centralising resources and building networks of labs may be a solution. It
is also essential to share data with companies while at the same time protecting patients. And lastly,
labs that have already focused on collecting and managing large amounts of data, particularly
genomic data and other omics data (such as proteomics or metabolomics), may have a higher chance
of successfully implementing digital pathology. This is because they likely already have the
necessary infrastructure in place, such as computing clusters and a team of informaticians and
professionals who are familiar with managing large data sets.



